

US009089453B2

(12) United States Patent McCabe

(54) METHOD FOR PRODUCING ABSORBENT ARTICLE WITH STRETCH FILM SIDE PANEL AND APPLICATION OF INTERMITTENT DISCRETE COMPONENTS OF AN ABSORBENT ARTICLE

(71) Applicant: **CURT G. JOA, INC.**, Sheboygan Falls, WI (US)

(72) Inventor: **John A. McCabe**, Sheboygan Falls, WI

(US)

(73) Assignee: Curt G. Joa, Inc., Sheboygan Falls, WI

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 102 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/915,388

(22) Filed: Jun. 11, 2013

(65) **Prior Publication Data**

US 2013/0269864 A1 Oct. 17, 2013

Related U.S. Application Data

- (63) Continuation-in-part of application No. 12/979,154, filed on Dec. 27, 2010, now Pat. No. 8,460,495.
- (60) Provisional application No. 61/335,018, filed on Dec. 30, 2009.
- (51) **Int. Cl.** *A61F 13/15* (2006.01)
- (52) U.S. Cl.

CPC A61F 13/15699 (2013.01); A61F 13/15707 (2013.01); A61F 13/15804 (2013.01); Y10T 156/10 (2015.01); Y10T 156/1051 (2015.01)

(10) Patent No.: US 9,089,453 B2 (45) Date of Patent: *Jul. 28, 2015

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

135,145 A	1/1873	Murphy
293,353 A	2/1884	Purvis
312,257 A	2/1885	Cotton et al
410,123 A	8/1889	Stilwell
432,742 A	7/1890	Stanley
643,821 A	2/1900	Howlett
1,393,524 A	10/1921	Grupe
1,431,315 A	10/1922	Le Moine
1,605,842 A	11/1926	Jones

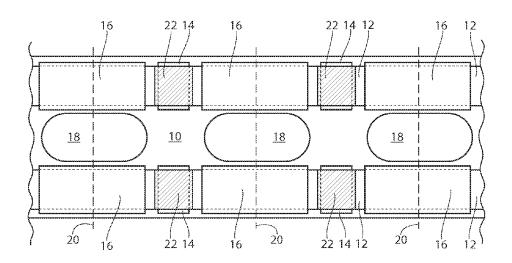
(Continued)

FOREIGN PATENT DOCUMENTS

BE 1007854 11/1995 CA 1146129 5/1983

(Continued)

OTHER PUBLICATIONS


European Search Report, relating to Appln. No. EP14172017, dated Jul. 23, 2014, 6 pages.

Primary Examiner — Barbara J Musser (74) Attorney, Agent, or Firm — Ryan Kromholz & Manion, S.C.

(57) ABSTRACT

Apparatus and methods are provided to allow for creation of a configured laminate of a non-woven material, to which a character strip is applied, the character strip exposed by either heat severing and removal of overlying materials, or intermittent application of overlying materials to leave the desired portions of the character strip exposed. A simultaneously formed core insert is applied to a preformed chassis web.

4 Claims, 11 Drawing Sheets

US 9,089,453 B2 Page 2

(56)		Referen	ces Cited	3,356,092 A	12/1967	
	ЦS	PATENT	DOCUMENTS	3,360,103 A 3,336,847 A	12/1967 1/1968	Joa Johnson
	0.5.	171111111	DOCUMENTS	3,391,777 A	7/1968	
1.	,686,595 A	10/1928	Belluche	3,454,442 A		
	,957,651 A	5/1934		3,463,413 A	8/1969	
	,009,857 A		Potdevin	3,470,848 A 3,484,275 A	10/1969	Drener Lewicki, Jr.
	,054,832 A		Potdevin Linscott	3,502,322 A	3/1970	
	,117,432 A ,128,746 A	8/1938		3,521,639 A	7/1970	
	131,808 A	10/1938		3,526,563 A		Schott, Jr.
	,164,408 A		Joa	3,527,123 A	9/1970	
	,167,179 A	7/1939	Joa Cohn et al.	3,538,551 A 3,540,641 A	11/1970 11/1970	Joa Besnyo
	,171,741 A ,213,431 A	9/1939 9/1940		3,575,170 A	4/1971	
	,254,290 A	9/1941		3,607,578 A		Berg et al.
	,254,291 A		Joa	3,635,462 A	1/1972	
	,282,477 A	5/1942		3,656,741 A 3,666,611 A	5/1972	Macke et al.
	,286,096 A ,296,931 A	6/1942 9/1942		3,673,021 A	6/1972	
	,304,571 A	12/1942		3,685,818 A		Burger et al.
2,	,324,930 A		Joa	3,728,191 A		Wierzba et al.
2,	,345,937 A		Joa	3,745,947 A 3,751,224 A	7/1973 8/1973	Brocklehurst Wackerle
2,	,466,240 A ,481,929 A		Joa Joa	3,758,102 A		Munn et al.
	510,229 A	6/1950		3,762,542 A	10/1973	Grimes
2,	,540,844 A	2/1951	Strauss	3,772,120 A	11/1973	
	,584,002 A		Elser et al.	3,776,798 A 3,796,360 A	12/1973 3/1974	Milano Alexeff
	,591,359 A ,618,816 A	4/1952 11/1952		3,811,987 A	5/1974	Wilkinson et al.
	,627,859 A		Hargrave	3,816,210 A	6/1974	Aoko et al.
	,695,025 A	11/1954		3,847,710 A	11/1974	Blomqvist et al.
	,702,406 A	2/1955		3,854,917 A 3,883,389 A		McKinney et al. Schott, Jr.
,	,721,554 A	10/1955 1/1956		3,888,400 A	6/1975	
	,730,144 A ,772,611 A		Heywood	3,901,238 A		Geller et al.
	,780,253 A	2/1957		3,903,768 A	9/1975	Amberg et al.
	,785,609 A	3/1957		3,904,147 A	9/1975	Taitel et al. Kukla et al.
	,788,786 A	4/1957		3,918,968 A 3,921,481 A		Fleetwood
	,811,905 A ,828,745 A	4/1958	Kennedy, Jr. Deutz	3,941,038 A	3/1976	
	,839,059 A	6/1958		3,960,646 A		Wiedamann
	,842,169 A	7/1958		3,988,194 A 3,991,994 A	10/1976 11/1976	Babcock et al.
	,851,934 A ,875,724 A	9/1958 3/1959	Heywood	4,002,005 A	1/1970	Mueller et al.
	,890,700 A		Lonberg-Holm	4,003,298 A		Schott, Jr.
	,913,862 A		Sabee	4,009,626 A	3/1977	Gressman
	,939,461 A	6/1960		4,009,814 A 4,009,815 A	3/1977	Singh Ericson et al.
	,939,646 A ,960,143 A	6/1960 11/1960	Joa	4,053,150 A	10/1977	
	,900,143 A ,990,081 A		De Neui et al.	4,056,919 A	11/1977	Hirsch
	,991,739 A	7/1961		4,081,301 A	3/1978	
	,016,207 A		Comstock, III	4,090,516 A	5/1978	
	,016,582 A ,017,795 A	1/1962 1/1962		4,094,319 A 4,103,595 A	6/1978 8/1978	
	,020,687 A	2/1962		4,106,974 A	8/1978	
	,021,135 A	2/1962		4,108,584 A		Radzins et al.
	,024,957 A	3/1962		4,136,535 A 4,141,193 A	1/1979 2/1979	Audas Joa
	,053,427 A ,054,516 A	9/1962 9/1962	Wasserman	4,141,509 A	2/1979	
	,069,982 A		Heywood et al.	4,142,626 A	3/1979	Bradley
	,075,684 A		Rothmann	4,157,934 A	6/1979	Ryan et al.
	,086,253 A		Joa	4,165,666 A 4,168,776 A	8/1979 9/1979	Johnson et al. Hoeboer
	,087,689 A ,089,494 A	4/1963 5/1963	Schwartz	4,171,239 A	10/1979	
	091,408 A	5/1963	Schoeneman	4,205,679 A	6/1980	Repke et al.
3,	,114,994 A	12/1963	Joa	4,208,230 A	6/1980	Magarian
	,122,293 A	2/1964		4,213,356 A 4,215,827 A	7/1980 8/1980	Armitage Roberts et al.
	,128,206 A ,203,419 A	4/1964 8/1965	Dungler	4,213,827 A 4,220,237 A	9/1980	
	,203,419 A ,230,955 A	8/1965 1/1966		4,222,533 A		Pongracz
	,268,954 A	8/1966		4,223,822 A	9/1980	Clitheroe
3,	,288,037 A	11/1966	Burnett	4,231,129 A	11/1980	
	,289,254 A	12/1966		4,234,157 A		Hodgeman et al.
	,291,131 A ,301,114 A	12/1966 1/1967	Joa Joa	4,236,955 A 4,275,510 A	12/1980 6/1981	Prittie George
	,301,114 A ,318,608 A	5/1967	Smrekar	4,273,310 A 4,284,454 A	8/1981	Joa
	,322,589 A		Joa	4,297,157 A	10/1981	Van Vliet
	,342,184 A	9/1967		4,307,800 A	12/1981	

US 9,089,453 B2

Page 3

(56)			Referen	ces Cited	4,915,767	A		Rajala et al.
		U.S. I	PATENT	DOCUMENTS	4,917,746 4,925,520			Kons et al. Beaudoin et al.
		0.0.1		DOCUMENTS.	4,927,322			Schweizer et al.
	4,316,756		2/1982	Wilson	4,927,486			Fattal et al.
	4,325,519			McLean	4,927,582 4,937,887		5/1990	Schreiner
	4,342,206 4,349,140			Rommel Passafiume	4,963,072		10/1990	
	4,364,787		12/1982		4,987,940			Straub et al.
	4,374,576		2/1983		4,994,010			Doderer-Winkler
	4,379,008			Gross et al.	5,000,806 5,021,111			Merkatoris et al. Swenson
	4,394,898 4,411,721		7/1983	Campbell	5,025,910			Lasure et al.
	4,411,721			Littleton	5,029,505	A		Holliday
	4,452,597			Achelpohl	5,045,039		9/1991	
	4,479,836			Dickover et al.	5,045,135 5,062,597			Meissner et al. Martin et al.
	4,492,608 4,501,098			Hirsch et al. Gregory	5,064,179		11/1991	
	4,508,528			Hirsch et al.	5,064,492		11/1991	
	4,522,853			Szonn et al.	5,080,741			Nomura et al.
	4,543,152		9/1985		5,094,658 5,096,532			Smithe et al. Neuwirth et al.
	4,551,191			Kock et al. Engel et al.	5,108,017			Adamski, Jr. et al.
	4,578,052 4,578,133			Oshefsky et al.	5,109,767		5/1992	Nyfeler et al.
	4,586,199		5/1986		5,110,403		5/1992	
	4,589,945		5/1986		5,114,392 5,127,981			McAdam et al. Straub et al.
	4,603,800 4,606,964			Focke et al. Wideman	5,131,525			Musschoot
	4,608,115			Schroth et al.	5,131,901		7/1992	
	4,610,681			Strohbeen et al.	5,133,511		7/1992	
	4,610,682		9/1986		5,147,487 5,163,594		9/1992 11/1992	Nomura et al.
	4,614,076			Rathemacher	5,171,239			Igaue et al.
	4,619,357 4,625,612		10/1986	Radzins et al.	5,176,244			Radzins et al.
	4,634,482			Lammers	5,183,252			Wolber et al.
	4,641,381			Heran et al.	5,188,627			Igaue et al.
	4,642,150			Stemmler	5,190,234 5,195,684			Ezekiel Radzins
	4,642,839 4,650,173		2/1987 3/1987	Johnson et al.	5,203,043		4/1993	
	4,650,406		3/1987		5,213,645			Nomura et al.
	4,650,530			Mahoney et al.	5,222,422 5,223,069		6/1993 6/1993	Benner, Jr. et al. Tokuno et al.
	4,663,220 4,672,705			Wisneski et al. Bors et al.	5,226,992			Morman
	4,675,016			Meuli et al.	5,246,433			Hasse et al.
	4,675,062			Instance	5,252,228		10/1993	
	4,675,068			Lundmark	5,267,933 5,273,228			Precoma Yoshida
	4,686,136 4,693,056			Homonoff et al. Raszewski	5,275,076			Greenwalt
	4,701,239		10/1987		5,275,676	A	1/1994	Rooyakkers et al.
	4,720,415	A	1/1988	Vander Wielen et al.	5,308,345		5/1994	
	4,723,698			Schoonderbeek	5,328,438 5,334,446		8/1994 8/1994	Crowley Ouantrille et al.
	4,726,874 4,726,876			Van Vliet Tomsovic, Jr.	5,340,424		8/1994	
	4,743,241			Igaue et al.	5,353,909	A	10/1994	
	4,751,997	A	6/1988	Hirsch	5,368,893			Sommer et al.
	4,753,429			Irvine et al.	5,389,173 5,393,360			Merkotoris et al. Bridges et al.
	4,756,141 4,764,325			Hirsch et al. Angstadt	5,407,507		4/1995	Ball
	4,765,780			Angstadt	5,407,513			Hayden et al.
	4,776,920		10/1988		5,410,857 5,415,649		5/1995	Utley Watanabe et al.
	4,777,513 4,782,647		10/1988	Williams et al.	5,417,132			Cox et al.
	4,785,986			Daane et al.	5,421,924			Ziegelhoffer et al.
	4,795,416	A		Cogswell et al.	5,424,025			Hanschen et al.
	4,795,451			Buckley	5,429,576 5,435,802		7/1995	Doderer-Winkler Kober
	4,795,510 4,798,353		1/1989	Wittrock et al.	5,435,971			Dyckman
	4,801,345			Dussaud et al.	5,449,353	A		Watanabe et al.
	4,802,570	A	2/1989	Hirsch et al.	5,464,401			Hasse et al.
	4,826,499		5/1989		5,486,253 5,494,622			Otruba Heath et al.
	4,840,609 4,845,964			Jones et al. Bors et al.	5,500,075			Herrmann
	4,864,802			D'Angelo	5,516,392			Bridges et al.
	4,880,102	A	11/1989	Indrebo	5,518,566	A		Bridges et al.
	4,888,231			Angstadt	5,525,175			Blenke et al.
	4,892,536			Des Marais et al.	5,531,850 5,540,647			Hermann Weiermann et al.
	4,904,440 4,908,175			Angstadt Angstadt	5,540,647		7/1996	
	4,909,019			Delacretaz et al.	5,545,275			Herrin et al.
	, ,	-			, ,			

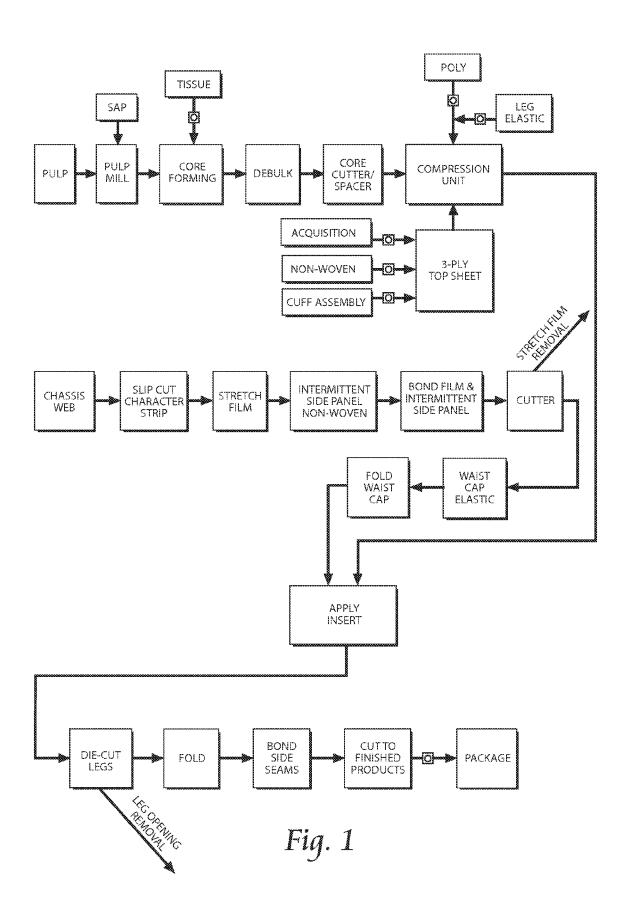
US 9,089,453 B2 Page 4

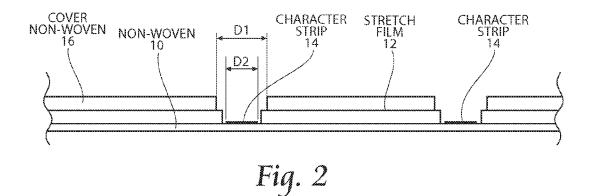
(56)		Referen	ces Cited	6,183,576			Couillard et al.
	TIC	DATENIT	DOCUMENTS	6,193,054 6,193,702			Henson et al. Spencer
	U.S.	PALENT	DOCUMENTS	6,195,850			Melbye
5,545,28	5 A	8/1996	Johnson	6,196,147	B1	3/2001	Burton et al.
5,552,01	3 A		Ehlert et al.	6,210,386			
5,555,78		9/1996		6,212,859 6,214,147			Bielik, Jr. et al. Mortellite et al.
5,556,36 5,556,50			Kober et al. Rajala et al.	6,250,048			Linkiewicz
5,560,79			Ruscher et al.	6,264,639		7/2001	
5,575,18	7 A		Dieterlen	6,264,784 6,276,421			Menard et al.
5,586,96		12/1996		6,276,421			Valenti et al. Borresen
5,602,74 5,603,79		2/1997 2/1997	Thomas	6,280,373		8/2001	
5,624,42			Bridges et al.	6,284,081			Vogt et al.
5,624,42		4/1997		6,287,409 6,305,260			Stephany Truttmann et al.
5,628,73 5,634,91			Suekane Fujioka et al.	6,306,122			Narawa et al.
5,636,50		6/1997		6,309,336	В1	10/2001	Muessig et al.
5,643,16	5 A	7/1997	Klekamp	6,312,420			Sasaki et al.
5,643,39			Rajala et al.	6,314,333 6,315,022			Rajala et al. Herrin et al.
5,645,54 5,659,22		7/1997 8/1997	Nomura et al.	6,319,347		11/2001	
5,660,65			Rajala et al.	6,336,921			Kato et al.
5,660,66			Jalonen	6,336,922 6,336,923			VanGompel et al.
5,683,37 5,683,53			Kato et al. Roessler et al.	6,358,350			Fujioka et al. Glaug et al.
5,685,87			Bruemmer	6,369,291		4/2002	Uchimoto et al.
RE35,68			Igaue et al.	6,375,769			Quereshi et al.
5,693,16			Schmitz	6,391,013 6,416,697			Suzuki et al. Venturino et al.
5,699,65 5,705,01		1/1997	Hartman et al.	6,425,430			Ward et al.
5,707,47			Rajala et al.	6,431,038			Couturier
5,711,83	2 A	1/1998	Glaug et al.	6,440,246			Vogt et al.
5,725,51		3/1998		6,443,389 6,446,795		9/2002 9/2002	Allen et al.
5,725,71 5,743,99			Fujioka Roessler et al.	6,473,669			Rajala et al.
5,745,92			Rajala et al.	6,475,325			Parrish et al.
5,746,86			Hayden et al.	6,478,786 6,482,278			Glaug et al. McCabe et al.
5,749,98 5,759,34			Linman et al. Boothe et al.	6,494,244			Parrish et al.
5,766,38			Brandon et al.	6,514,233	В1	2/2003	Glaug
5,766,41		6/1998		6,521,320 6,523,595		2/2003	McCabe et al. Milner et al.
5,779,68 5,788,79			Pfeifer et al. Herrin et al.	6,524,423			Hilt et al.
5,817,19			Brennecke et al.	6,533,879	B2	3/2003	Quereshi et al.
5,827,25	9 A	10/1998	Laux et al.	6,540,857			Coenen et al.
5,829,16			Kotischke	6,547,909 6,550,517			Butterworth Hilt et al.
5,836,93 5,858,01			Toyoda et al. Yamaki et al.	6,551,228			Richards
5,865,39			Kreft et al.	6,551,430			Glaug et al.
5,868,72			Barr et al.	6,554,815 6,557,466			Umebayashi Codde et al.
5,876,02 5,876,79			Fukui et al. Caldwell	6,569,275		5/2003	Popp et al.
5,879,50			Herrin et al.	6,572,520	B2	6/2003	Blumle
5,902,22			Wessman	6,581,517 6,585,841			Becker et al. Popp et al.
5,902,43 5,904,67			Wilkinson et al. Laux et al.	6,589,149			
5,932,03			Popp et al.	6,596,107	B2	7/2003	Stopher
5,935,36	7 A	8/1999	Hollenbeck	6,596,108		7/2003	
5,938,19			Bluemle et al.	6,605,172 6,605,173		8/2003 8/2003	Anderson et al. Glaug et al.
5,938,65 5,964,39		8/1999 10/1999	Borresen et al.	6,620,276			Kuntze et al.
5,964,97			Woolwine et al.	6,632,209		10/2003	Chmielewski
5,971,13			Trefz et al.	6,634,269 6,637,583			Eckstein et al. Anderson
5,983,76 6,009,78			Hillebrand McNeil	6,648,122			Hirsch et al.
6,022,44			Rajala et al.	6,649,010	B2	11/2003	Parrish et al.
6,036,80	5 A	3/2000	McNichols	6,656,309			Parker et al.
6,043,83			Kerr et al.	6,659,150 6,659,991			Perkins et al. Suekane
6,050,51 6,074,11			Dobrescu et al. Verlinden et al.	6,675,552			Kunz et al.
6,076,44	2 A	6/2000	Arterburn et al.	6,682,626	B2	1/2004	Mlinar et al.
6,080,90			Osterdahl et al.	6,684,925			Nagate et al.
6,098,24			Toney et al.	6,722,494			Nakakado
6,123,79 6,138,43			Samida et al. Malin et al.	6,730,189 6,743,324			Franzmann Hargett et al.
6,142,04			Bradatsch et al.	6,750,466			Guha et al.
6,171,43			Brisebois	6,758,109			Nakakado

US 9,089,453 B2Page 5

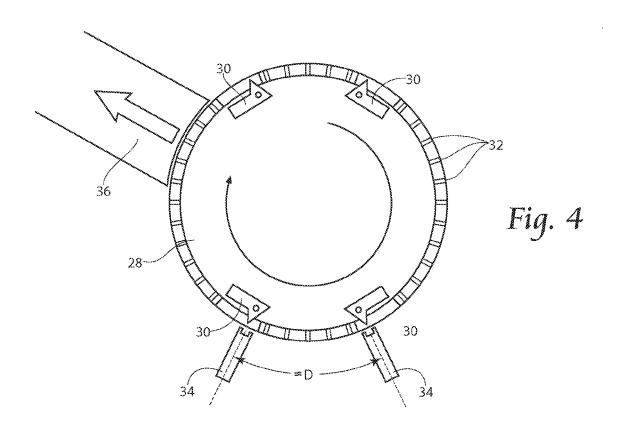
(56)		Referen	ces Cited	8,007,623			Andrews
	11.0	DATENIT	DOCUMENTS	8,011,493 8,016,972			Giuliani et al. Andrews et al.
	U.S.	PALENT	DOCUMENTS	8,025,652			Hornung et al.
6.7	766,817 B2	7/2004	da Silva	8,062,279			Miyamoto
	779,426 B1		Holliday	8,062,459			Nakakado et al.
	308,582 B2		Popp et al.	8,100,173		1/2012	Hornung et al.
,	197,991 S		Otsubo et al.	8,172,977			Andrews et al.
	311,019 B2	11/2004	Christian et al.	8,176,573			Popp et al.
6,8	311,642 B2	11/2004		8,178,035			Edvardsson et al.
	314,217 B2	11/2004	Blumenthal et al.	8,182,624			Handziak
,	320,671 B2	11/2004		8,182,735 8,182,736			Edvardsson Edvardsson
	323,981 B2		Ogle et al.	8,257,237			Burns, Jr. et al.
	337,840 B2		Yonekawa et al.	8,273,003			Umebayashi et al.
	340,616 B2 352,186 B1	1/2005	Summers Matsuda et al.	8,293,056		10/2012	
	352,180 B1 369,494 B2		Roessler et al.	8,295,552			Mirtich et al.
	375,202 B2		Kumasaka et al.	8,381,489	B2	2/2013	Freshwater et al.
	884,310 B2		Roessler et al.	8,398,793			Andrews et al.
	893,528 B2	5/2005	Middelstadt et al.	8,417,374			Meyer et al.
6,9	13,664 B2	7/2005	Umebayashi et al.	8,439,814			Piantoni et al.
	913,718 B2	7/2005		8,460,495			Mccabe
	18,404 B2		Dias da Silva	8,485,956 8,512,496			Burns, Jr. et al. Makimura
	76,521 B2	12/2005		8,656,817			Fritz et al.
	978,486 B2	3/2006	Zhou et al.	8,663,411			McCabe
	017,321 B2 017,820 B1		Brunner	8,673,098			McCabe
	045,031 B2		Popp et al.	2001/0012813	A1	8/2001	Bluemle
	047,852 B2		Franklin et al.	2001/0017181	A1		Otruba et al.
	048,725 B2		Kling et al.	2001/0035332		11/2001	
7,0)66,586 B2	6/2006	da Silva	2001/0042591			Milner et al.
,)69,970 B2		Tomsovic et al.	2002/0040630		4/2002	
)77,393 B2	7/2006		2002/0046802 2002/0059013			Tachibana et al. Rajala et al.
	130,710 B2		Popp et al.	2002/0039013			Codde et al.
	137,971 B2 172,666 B2		Tanzer Groves et al.	2002/0096241			Instance
	175,584 B2		Maxton et al.	2002/0125105			Nakakado
	195,684 B2	3/2007		2002/0162776	A1	11/2002	Hergeth
	201,345 B2	4/2007		2003/0000620			Herrin et al.
	204,682 B2	4/2007	Venturino et al.	2003/0015209			Gingras et al.
7,2	214,174 B2		Allen et al.	2003/0051802			Hargett et al.
	214,287 B2	5/2007	Shiomi et al.	2003/0052148 2003/0066585		3/2003	Rajala et al. McCabe
	220,335 B2		Van Gompel et al.	2003/0000383		5/2003	
	247,219 B2 252,730 B2		O'Dowd Hoffman et al.	2003/0084984			Glaug et al.
	264,686 B2		Thorson et al.	2003/0089447		5/2003	Molee et al.
	303,708 B2		Andrews et al.	2003/0115660	A1	6/2003	Hopkins
	326,311 B2		Krueger et al.	2003/0121244		7/2003	Abba
	32,459 B2	2/2008	Collins et al.	2003/0121614		7/2003	Tabor et al.
	874,627 B2		McCabe	2003/0135189			Umebayashi
	880,213 B2		Pokorny et al.	2003/0150551 2004/0007328		8/2003 1/2004	Popp et al.
	898,870 B2		McCabe	2004/000/328		1/2004	Tachibana et al.
	899,266 B2 149,084 B2		Aiolfi et al. Nakakado	2004/0044325			Corneliusson
	152,436 B2		Andrews	2004/0073187			Karami
	500,941 B2		Coe et al.	2004/0084468			Kelbert et al.
	33,709 B2	5/2009		2004/0087425			Ng et al.
	537,215 B2	5/2009	Beaudoin et al.	2004/0098791		5/2004	
	69,007 B2	8/2009		2004/0112517			Groves et al. Roessler et al.
	87,966 B2		Nakakado et al.	2004/0122413 2004/0157041			Leboeuf et al.
	518,513 B2	11/2009		2004/013/041			Edinger
	538,014 B2 540,962 B2		Coose et al. Meyer et al.	2004/0167493			
	595,464 B2		Fletcher et al.	2004/0177737		9/2004	Adami
	703,599 B2	4/2010		2004/0182213	A1	9/2004	Wagner et al.
	708,849 B2		McCabe	2004/0182497	A1	9/2004	Lowrey
	770,712 B2		McCabe	2004/0216830		11/2004	Van Eperen
	771,407 B2	8/2010	Umebayashi	2005/0000628			Norrby
	780,052 B2		McCabe	2005/0022476		2/2005	
	793,772 B2		Schafer	2005/0026760 2005/0056678			Yamamoto et al.
	311,403 B2		Andrews	2005/0056678			Nomura et al. Werner et al.
	361,756 B2 371,400 B2		Jenquin et al. Sablone et al.	2005/007/418			Waksmundzki
	009,956 B2		Coose et al.	2005/0101929			Sommer et al.
	022,983 B2		Prokash et al.	2005/0130358			Meyer et al.
	935,296 B2		Koele et al.	2005/0230449			Meyer et al.
	75,584 B2		McCabe	2005/0233881		10/2005	
	987,964 B2		McCabe	2005/0234412		10/2005	Andrews et al.
8,0	007,484 B2	8/2011	McCabe et al.	2005/0257881	Al	11/2005	Coose et al.

US 9,089,453 B2


Page 6


(56) Refere	ences Cited		DE	102005048868	4/2007
U.S. PATEN	T DOCUMENTS		DE EP EP	102007063209 0044206	6/2009 1/1982
2005/0275148 A1 12/200	5 Beaudoin et al.		EP EP	0048011 0089106	3/1982 9/1983
2006/0011030 A1 1/200	Wagner et al.		EP	0099732	2/1984
2006/0021300 A1 2/200 2006/0137298 A1 6/200			EP EP	0206208 0304140	12/1986 2/1989
2006/0173429 A1* 8/200		604/361	EP	0411287	2/1991
2006/0199718 A1 9/200			EP EP	0439897 0455231 A1	8/1991 11/1991
2006/0201619 A1 9/200 2006/0224137 A1 10/200	5 Andrews 5 McCabe et al.		EP	510251	10/1992
2006/0265867 A1 11/200	Schaap		EP EP	0589859 0676352	3/1994 4/1995
	6 Meyer 7 McCabe		EP	0652175 A1	5/1995
2007/0131343 A1 6/200	7 Nordang		EP EP	0811473	12/1997
2007/0131817 A1 6/200 2008/0041206 A1 2/200	7 Fromm 8 Mergola et al.		EP EP	0901780 0990588	3/1999 4/2000
2008/0125738 A1 5/200	3 Tsuji et al.		EP	1132325 A2	9/2001
	B Eckstein et al. B Schlinz et al.		EP EP	1035818 1199057	4/2002 4/2002
	8 Wiedmann		EP	1366734	12/2003
	Peterson Page 1		EP EP	1393701 1415628	3/2004 5/2004
2008/0287898 A1 11/200 2009/0020211 A1 1/200	Guzman Reyes Andrews et al.		EP	1433731	6/2004
2009/0126864 A1 5/200			EP EP	1571249 1619008	9/2005 1/2006
	Malowaniec et al. Edvardsson et al.		EP	1707168 A2	10/2006
2010/0078119 A1 4/201) Yamamoto		EP	1726414	11/2006
	Otsubo Yamamoto		EP EP	1302424 1801045	12/2006 6/2007
	Eckstein et al.		EP	1870067	12/2007
) Eckstein		EP EP	1941853 1961403	7/2008 8/2008
) Nakatani) Ito et al.		EP	1994919	11/2008
2011/0003673 A1 1/201			EP EP	2180864 2211812	11/2008 11/2008
2011/0106042 A1 5/201		156/227	EP	2103427	9/2009
	McCabe 2 Long et al.	130/227	EP EP	2233116 2238955	9/2010 10/2010
2012/0123377 A1 5/201	2 Back		EP	2345395	7/2011
2012/0172828 A1 7/201 2012/0270715 A1 10/201	2 Koenig et al. 2 Motegi et al.		EP	1175880	5/2012
2012/02/07/13 A1 10/201 2012/0285306 A1 11/201	- C		EP EP	1868821 2036522	1/2013 3/2013
	2 Ostertag		EP	1272347	4/2013
2012/0312463 A1 12/201 2013/0066613 A1 3/201			EP EP	2032338 2332505	8/2013 12/2013
2013/0079741 A1 3/201			EP	2412348	3/2014
2013/0239765 A1 9/201	3 McCabe et al.		ES ES	509706 520559	11/1982 12/1983
FOREIGN PAT	ENT DOCUMENTS		ES	296211	12/1987
TOREIGIVITA	ENT DOCUMENTS		ES ES	2310447 2311349	7/2009 9/2009
CA 1153345	9/1983 7/1985		FR	2177355	11/1973
CA 1190078 CA 1210744	9/1986		FR FR	2255961 1132325	7/1975 10/2006
CA 1212132	9/1986		FR	2891811	4/2007
CA 1236056 CA 1249102	5/1988 1/1989		GB	191101501 A 439897	0/1912
CA 1292201	11/1991		GB GB	856389	12/1935 12/1960
CA 1307244 CA 1308015	9/1992 9/1992		GB	941073	11/1963
CA 1310342	11/1992		GB GB	1096373 1126539	12/1967 9/1968
CA 2023816 CA 2330679	3/1994 9/1999		GB	1346329	2/1974
CA 2404154	10/2001		GB GB	1412812 1467470	11/1975 3/1977
CA 2541194 CA 2559517	10/2006 4/2007		GB	2045298	10/1980
CA 2337700	8/2008		GB GB	2115775 2288316	9/1983 10/1995
CA 2407867	6/2010		IT	1374910	5/2010
CA 2699136 CA 142627	10/2010 6/2013		IT	1374911	5/2010
CA 2600432	7/2013		JP JP	428364 542180	1/1992 2/1993
CA 2573445 CA 2547464	3/2014 4/2014		JP	576566	3/1993
CN 202105105	1/2012		JP JP	626160 626161	2/1994
DE 60123502 DE 60216550	10/2006 12/2006		JP JP	626161 6197925 A	2/1994 7/1994
DE 102005035544	2/2007		JP	9299398	11/1997
DE 1020060472-80	4/2007		JP	10035621	2/1998

US 9,089,453 B2


Page 7

(56)	References Cited	WO	WO9965437	12/1999
` /		WO	WO0143682	6/2001
	FOREIGN PATENT DOCUMENTS	WO	WO0172237 A2	10/2001
		WO	WO03/031177	4/2003
JP	10-277091 A 10/1998	WO	WO2004007329	1/2004
JР	2008-161300 7/2008	WO	WO2005075163	8/2005
SE	0602047 5/2007	WO	WO2006038946	4/2006
SE	529295 6/2007	WO	WO2007029115	3/2007
SE	532059 10/2009	WO	WO2007039800	4/2007
WO	WO08155618 12/1988	WO	WO2007126347	11/2007
WO	WO93/15248 8/1993	WO	WO2008001209	1/2008
WO	WO9403301 2/1994	WO	WO2008/015594	2/2008
WO	WO97/23398 7/1997	WO	WO2008037281	4/2008
WO	WO9732552 9/1997	WO	WO2008/123348	10/2008
WO	WO9747265 12/1997	WO	WO2009/065497	3/2009
WO	WO9747810 12/1997	WO	WO2009/065500	3/2009
WO	WO9747810 12/1997 WO9821134 5/1998	WO	WO2010028786	3/2010
WO	WO98/55298 12/1998	WO	WO2011101773	8/2011
		WO	WO2012/123813 A1	9/2012
WO	WO9907319 2/1999	WO	WO2014/021897	2/2014
WO	WO9913813 A1 3/1999			
WO	WO9932385 7/1999	* cited	by examiner	

22 14 12 16 22 14 16 16 12 <u>18</u> <u>10</u> <u>18</u> <u> 18</u> 2016 20 20 22 14 22 14 12

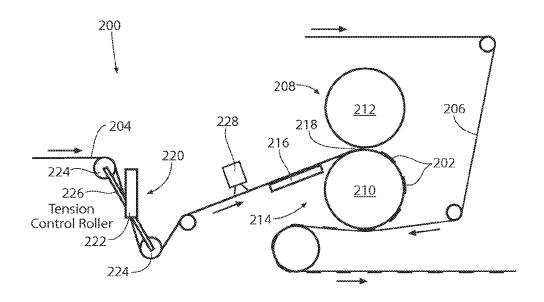


Fig. 5

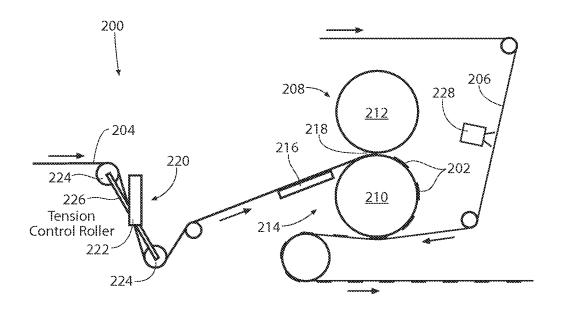


Fig. 6

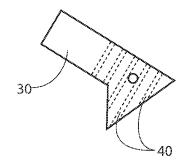
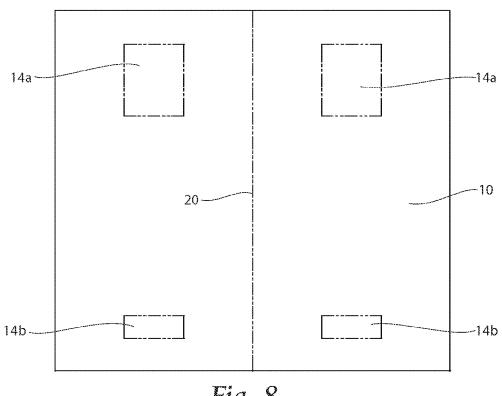


Fig. 7



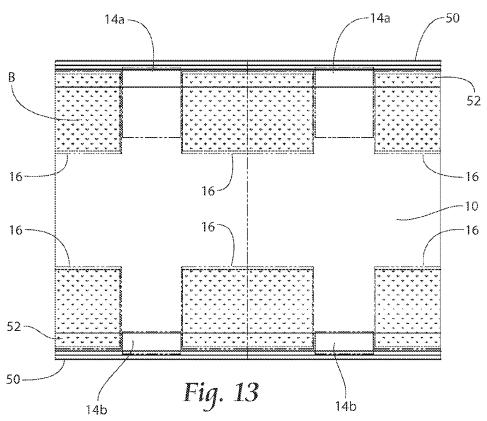


Fig. 8

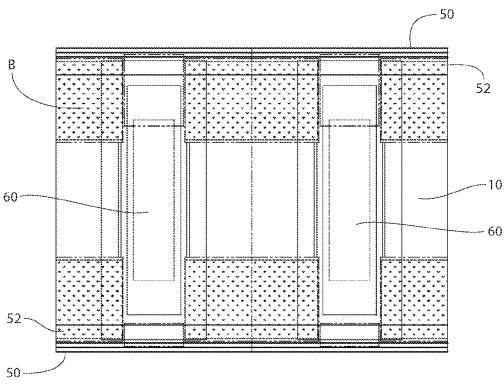
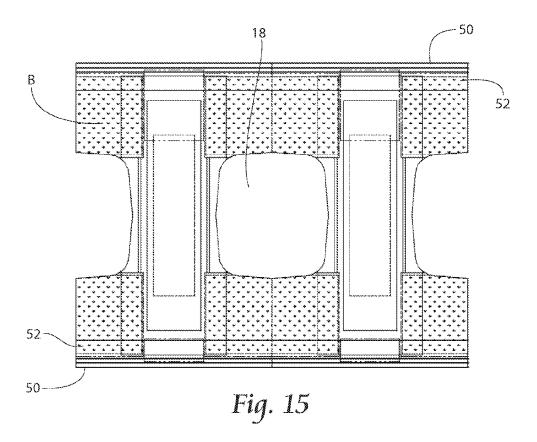
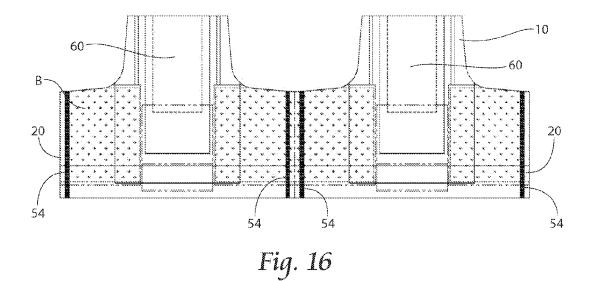
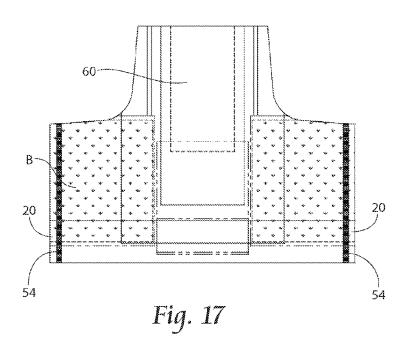





Fig. 14

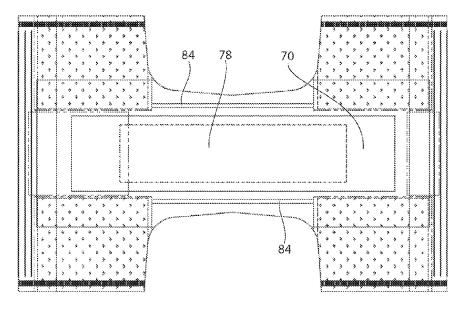


Fig. 18

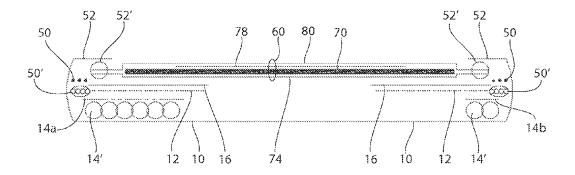


Fig. 19

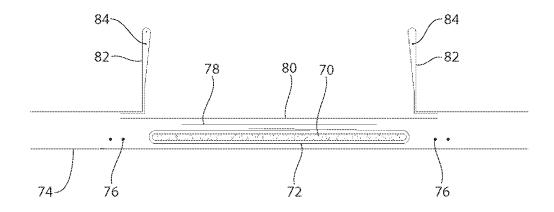


Fig. 20

METHOD FOR PRODUCING ABSORBENT ARTICLE WITH STRETCH FILM SIDE PANEL AND APPLICATION OF INTERMITTENT DISCRETE COMPONENTS OF AN ABSORBENT ARTICLE

RELATED APPLICATION

This is a continuation-in-part application of U.S. patent application Ser. No. 12/979,154, filed 27 Dec. 2010, now U.S. ¹⁰ Pat. No. 8,460,495, which claimed the benefit of U.S. Provisional Application Ser. No. 61/335,018, filed 30 Dec. 2009.

BACKGROUND OF THE INVENTION

This invention relates to an apparatus and method for producing absorbent articles with stretch film side panels. The invention disclosed herein relates to apparatus and methods for waste reduction and improvements to the quality and production in web processing operations, such as diaper 20 manufacturing. While the description provided relates to diaper manufacturing, the apparatus and method are easily adaptable to other applications.

Generally, diapers comprise an absorbent insert or patch and a chassis, which, when the diaper is worn, supports the 25 insert proximate a wearer's body. Additionally, diapers may include other various patches, such as tape tab patches, reusable fasteners and the like. The raw materials used in forming a representative insert are typically cellulose pulp, tissue paper, poly, nonwoven web, acquisition, and elastic, although 30 application specific materials are sometimes utilized. Usually, most of the insert raw materials are provided in roll form, and unwound and applied in assembly line fashion.

In the creation of a diaper, multiple roll-fed web processes are typically utilized. To create an absorbent insert, the cellulose pulp is unwound from the provided raw material roll and pulverized by a pulp mill. Discrete pulp cores are formed by a core forming assembly and placed on a continuous tissue web. Optionally, super-absorbent powder may be added to the pulp core. The tissue web is wrapped around the pulp core. The wrapped core is debulked by proceeding through a calendar unit, which at least partially compresses the core, thereby increasing its density and structural integrity. After debulking, the tissue-wrapped core is passed through a segregation or knife unit, where individual wrapped cores are 45 cut. The cut cores are conveyed, at the proper pitch, or spacing, to a boundary compression unit.

While the insert cores are being formed, other insert components are being prepared to be presented to the boundary compression unit. For instance, the poly sheet is prepared to 50 receive a cut core. Like the cellulose pulp, poly sheet material is usually provided in roll form. The poly sheet is fed through a splicer and accumulator, coated with an adhesive in a predetermined pattern, and then presented to the boundary compression unit. In addition to the poly sheet, which may form 55 the bottom of the insert, a two-ply top sheet may also be formed in parallel to the core formation. Representative plies are an acquisition web material and a nonwoven web material, both of which are fed from material rolls, through a splicer and accumulator. The plies are coated with adhesive, 60 adhered together, cut to size, and presented to the boundary compression unit. Therefore, at the boundary compression unit, three components are provided for assembly: the poly bottom sheet, the core, and the two-ply top sheet.

A representative boundary compression unit includes a die 65 roller and a platen roller. When all three insert components are provided to the boundary compression unit, the nip of the

2

rollers properly compresses the boundary of the insert. Thus, provided at the output of the boundary compression unit is a string of interconnected diaper inserts. The diaper inserts are then separated by an insert knife assembly and properly oriented. At this point, the completed insert is ready for placement on a diaper chassis.

A representative diaper chassis comprises nonwoven web material and support structure. The diaper support structure is generally elastic and may include leg elastic, waistband elastic and belly band elastic. The support structure is usually sandwiched between layers of the nonwoven web material, which is fed from material rolls, through splicers and accumulators. The chassis may also be provided with several patches, besides the absorbent insert. Representative patches include adhesive tape tabs and resealable closures.

The process utilizes two main carrier webs; a nonwoven web which forms an inner liner web, and an outer web that forms an outwardly facing layer in the finished diaper. In a representative chassis process, the nonwoven web is slit at a slitter station by rotary knives along three lines, thereby forming four webs. One of the lines is on approximately the centerline of the web and the other two lines are parallel to and spaced a short distance from the centerline. The effect of such slicing is twofold; first, to separate the nonwoven web into two inner diaper liners. One liner will become the inside of the front of the diaper, and the second liner will become the inside of the back of that garment. Second, two separate, relatively narrow strips are formed that may be subsequently used to cover and entrap portions of the leg-hole elastics. The strips can be separated physically by an angularly disposed spreader roll and aligned laterally with their downstream target positions on the inner edges of the formed liners.

After the nonwoven web is sliced, an adhesive is applied to the liners in a predetermined pattern in preparation to receive leg-hole elastic. The leg-hole elastic is applied to the liners and then covered with the narrow strips previously separated from the nonwoven web. Adhesive is applied to the outer web, which is then combined with the assembled inner webs having elastic thereon, thereby forming the diaper chassis. Next, after the elastic members have been sandwiched between the inner and outer webs, an adhesive is applied to the chassis. The chassis is now ready to receive an insert.

To assemble the final diaper product, the insert must be combined with the chassis. The placement of the insert onto the chassis occurs on a placement drum or at a patch applicator. The inserts are provided to the chassis on the placement drum at a desired pitch or spacing. The generally flat chassis/insert combination is then folded so that the inner webs face each other, and the combination is trimmed. A sealer bonds the webs at appropriate locations prior to individual diapers being cut from the folded and sealed webs.

The current practice in applying a stretchable web such as a poly web to a second web is involved continuously feeding the poly web into the process which results in poly running full length of product, or alternatively, full length of a constructed insert core which is then placed onto a nonwoventype chassis. Not all machine configurations can be adapted from a full length poly chassis to a poly insert configuration due to space and/or cost restrictions. It should be understood that application of the poly web along the entire length of the product, rather than only where it is useful, increases the amount of poly material which must be utilized. This is a waste of the material resource and adds additional cost to the product. It is therefore desirable to create a lower cost product by putting poly into the product only where it is useful, instead of the complete product.

However, typical slip/cut application of poly patch to a continuous web does not work well because of the elasticity of the poly web. The slip/cut process allows the poly to slip on anvil prior to being cut causing the poly to violently snap back at the moment of cut. This can result in a short patch-long patch output from the slip/cut where one or more of the resulting poly patches are extremely distorted on the carrier web. This result is useless for producing a diaper-type product and would be unacceptable to the consumer. It is therefore desirable to provide an apparatus that can cut patches from a 10 poly web while eliminating the snap back of the poly web material.

SUMMARY OF THE INVENTION

One aspect of the invention is a method including providing a base non-woven layer, and applying thereto a character strip. Next, a stretched film is applied over the character strip/base non-woven laminate, and the stretched film is intermittently bonded to the base non-woven. Next, a cover non- 20 and side seam bonded to form a pant style disposable product. woven is applied intermittently to the stretched film, thereby creating a laminate comprising the previously mentioned

In another embodiment, the character strip can be interchanged an image on at least one of core insert and a chassis 25 web, for instance in the form of a pre-printed web, or a web printed upon prior to being covered with the stretch woven material.

In one embodiment, the method comprises providing a plurality of pairs of heated knives about a rotatable body, with 30 vacuum commutation provided thereto. The stretched film is cut while stretched, the film being held to the rotating body by the vacuum commutation ports about the rotating body, until the stretched film is trimmed and the trim removed by a second source of vacuum. In this embodiment, a block is used 35 to push material into the rotating heated knives. In an alternative embodiment, vacuum is applied to the stretchable film to drawn the material against the heated knife, thereby severing the stretchable film.

Advantages to the present invention include fewer materials in the side seam bond sandwich, such as 4 instead of the 6-10 layers currently used. Fewer layers assist and facilitate ultrasonic bonding, and result in a more uniform product, because fewer layers are required to be constructed. In alternative embodiments, the product can be configured with or 45 without a waist band.

In another embodiment, simultaneously with the chassis formation, the insert assembly takes place. The formed insert is combined with the formed chassis web, and after this combination is made, the product can be folded and side seam 50 bonded to form a pant style diaper if desired, or tape tabs and ears can be applied to form a wrap around style diaper.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a schematic of a representative web processing
- FIG. 2 is a cross-sectional diagram showing a representative product configuration of the present invention;
- FIG. 3 is a plan view of the laminate produced by a repre- 60 sentative web processing system of the present invention prior to introduction of an insert from core forming opera-
- FIG. 4 is a side view of a rotating body used to sever elements and create the laminate of the present invention;
- FIG. 5 is a schematic of an embodiment of an apparatus for intermittent application of a web to a target web that may or

may not be used in conjunction with the present invention to intermittently apply discrete components;

FIG. 6 is an alternative embodiment of an apparatus for intermittent application of a web to a target web;

FIG. 7 is a side view of an alternative embodiment of vacuum application to a knife to sever elements of the present invention:

FIGS. 8-17 are a representative sequence of operations showing manufacturing techniques for a product formed according the methods of the present invention;

FIG. 18 is a laid open product formed according to methods of the present invention;

FIG. 19 is a cross-sectional view of a disposable product formed according to methods of the present invention;

FIG. 20 is a cross-sectional view of a core or insert assembly portion of a disposable product of the present invention; the core being introduced to a simultaneously formed chassis we structure to form a disposable product that can be folded

DESCRIPTION OF THE PREFERRED **EMBODIMENT**

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

It is noted that the present techniques and apparatus are described herein with respect to products such as diapers, but as previously mentioned, can be applied to a wide variety of processes in which discrete components are applied sequentially. FIG. 1 describes diaper making generally and schematically.

Referring to FIG. 1, a web processing operation starts with incorporating raw materials such as paper pulp and super absorbent polymer (SAP) in a pulp mill. The mixture is sent to a core forming drum, where cores are formed for retaining liquids. A core can be placed on or within a tissue and processed as shown. Eventually, the tissue layer essentially sandwiches the core, if desired.

The illustrated method displays a core form on tissue method, where the tissue is carried by a core forming drum and the tissue is pulled into a pulp forming pocket, where air-entrained pulp is then drawn into by vacuum.

The process continues through debulking, core cutting and spacing. At a boundary compression unit, the core/tissue combination is sandwiched between a preferably 3-ply topsheet layer and a printed poly backsheet layer carrying leg elastics. The 3-ply topsheet laminate comprises an acquisition layer, designed to accept liquid insult and distribute the 55 over a larger surface of the core to improve absorption performance and also to prevent reverse migration of liquid escaping from the core. Carried between the acquisition layer and the cuff non-woven layer is an insert non-woven layer 80.

At the compression unit, a compression roll compresses the materials around the border of the core, to create a topsheet/ backsheet sandwich with the core in the middle of the topsheet and the backsheet. At this point, the insert assembly has been formed, and is prepared for introduction to the chassis web assembly shown both on FIG. 1, and also described with regard to FIGS. 8-13 which describe the chassis web assembly. The chassis web assembly can be simultaneously formed in parallel with the insert assembly.

The web can undergo folding, extraction and trimming of excess material, and application of material to tighten the diaper about the waist. Eventually, the product is folded and packaged.

As seen on FIG. 1, the o symbol is shown at locations of 5 introductions of discrete components into the process. At these and other locations of material introduction, inspection can take place to determine the presence or absence of acceptable product introduction. In addition to visual inspection, operational characteristics such as startup/ramp-up/shut- 10 down operations can trigger waste minimization techniques as will be described later.

At each of these operations shown in FIG. 1, diagnostics can be performed to indicate whether the product meets acceptable criteria. If so, discrete elements, such as the core, 15 tissue layers, elastic, etc., continue to be applied in a sequence such as shown in FIG. 1. If not, no additional discrete elements need be applied.

Referring now to FIG. 2, a cross-sectional diagram showing a representative intended product configuration of the 20 present invention is shown. In this embodiment, it is seen that a first base layer of non-woven material 10 is supplied in continuous fashion. Next, a series of character strips 14 are shown, which for instance can comprise artwork or other design or fashion or useful strips of decorative or non-deco- 25 rative material. Over the character strips 14 are one or more webs of stretch film 12 which are preferably applied continuously, although intermittent application of stretch film 12 can also be used. Next, a cover-non-woven layer 16 is applied, preferably intermittently and preferably in two webs or lanes 30 of material. In other embodiments, the image of the character strips 14 can be deposited or printed on at least one of core insert and a chassis web, for instance in the form of a preprinted web, or a web printed upon prior to being covered with the stretch woven material.

It will be described later that an area of no or little bonding of the stretched film layer 12 to the character strip 14 or base non-woven 10 is achieved across generally the widths D1 and D2. In a preferred embodiment, the width D2 represents the width of character strip 14, and that a wider void space D1 is 40 created over the character strip representative of the distance between intermittent cover non-woven pieces 16.

The area of no or little bonding of the stretched film layer 12 to the character strip 14 or base non-woven 10 is provided so that the stretched film 12 can be severed and removed from 45 the laminate in areas where the stretched film layer 12 is not desired, such as in areas where the stretched film layer 12 has been not or minimally bonded to the other layers of the laminate.

Referring now to FIG. 3, a plan view of the preferred 50 laminate produced by a representative web processing system of the present invention is shown.

Leg cutouts 18 can be provided in the base non-woven layer 10 as shown. Side seams 20 are indicated to represent discrete diaper products between successive side seams 20 in 55 attachment, such as cover non-woven 16, character strip 14, the machine direction (right to left or left to right as shown). The character strips 14 can be exposed by severing the stretched film 12 into a removable chip 22 by use of a heated knife applied at areas of roughly equal to or less than width D1 (See FIG. 2) and removing the severed film 22 and expos- 60 ing the strip 14, which applies a silmu-cut/melt of the stretch film 12 only. This technique is described with reference to FIG. 4, discussed later. It is preferred that the severing of stretch film 12 be just wider than character strip 14, and that little or no bonding will have previously taken place between 65 character strip 14 and the stretched film 12, which will facilitate easy separation of the two elements 12 and 14.

Still referring to FIG. 3, it is preferred that the character the first base layer of non-woven material 10 is supplied in continuous fashion. Next, a series of character strips 14 are applied, preferably in two lanes representing the front and back of the diaper, preferably in the midsection of the diaper when worn by a user. The strips 14 preferably are formed of decorative material, and can also be used as a landing zone for tape tabs or other adhesive mechanisms provided on ears or tape tabs of the diaper (not shown).

In an alternative embodiment (See, e.g., FIG. 12) one or more strands of additional stretchable fabric, such as commercially available Lycra strands of stretchable fabric, can be added to the waist band for added strength if desired. This added fabric can also be applied across the same or narrower regions of the stretch film 12.

In one embodiment, the non-woven 10 is slip-cut to stretched film 12 and bonded ultrasonically or adhesively (not shown). A patterned bonding roll (with vacuum) may be used if desired

Referring now to FIG. 4, a side view of a rotating body 28 used to sever elements 22 and create the laminate of the present invention is shown. A laminate comprising one or more the elements of the laminate shown in FIG. 2 is introduced to the rotating body 28 (not shown) by conventional means. The laminate is introduced and spaced such that the severing across intended with D1 will be registered to achieve such a cut, by use of knifes 30 spaced apart. The laminate of FIG. 2 will be carried by vacuum commutation ports 32, and the result will be that preferably only the stretch film 12 is severed, and not the base non-woven layer 10. Optionally, the character strip can be severed at this point as well, particularly if the character strip is configured to cut/melt and the same temperature as the stretch film 12, for instance in the range of 225-250° F.

Preferably, the rotating body comprises a series of knifes 30, acting in pairs spaced apart a distance of approximately D1 to act upon the stretch film 12 and sever the stretch film 12 into a chip 22 that will be removed once rotated into communication with vacuum hood 36, which because only stretch film 12 (or, in addition, a small portion of character strip 14) will be removed and discarded or recycled. Preferably, the knives 30 have silicon lagging, heated knives. In this manner, the knifes can be used to heat sever stretch film 12 after being urged into contact with the heated knives by blocks 34, which are used to push the laminate of FIG. 2, including the stretch film material 12 into the rotating heated knives 30. In an alternative embodiment, vacuum is applied to the stretchable film to drawn the material against the heated knife, thereby severing the stretchable film. In an alternate embodiment shown in FIG. 7, the knives 30 can be supplied with vacuum ports 40, which drawn the stretch film into contact with the heated knife blades 30 at desired times to achieve severing the

Optionally, each of the components capable of discrete or stretch film 12, can be applied intermittently using the technique described in relation to the methods and apparatus shown in FIGS. 5-6 below. Referring now to FIG. 5, a diagrammatic view of a zero-waste system 200 for intermittently applying segments 202 of a stretchable material to a target web 206 is shown. The intermittent poly application apparatus and method can be employed at locations of desired intermittent introduction of material to create the laminate shown in FIG. 3. The intermittent poly application apparatus and method can also be used on other, non-poly application processes where intermittent application of a certain component is desired.

As shown in FIG. 5 the apparatus 200 preferably includes a first continuous web 204 of stretchable material. The stretchable material may be of any type known in the art including, but not limited to a poly material. The system 200 further includes a second continuous web 206. The second 5 continuous web 206 is preferably of a nonwoven material. The first continuous web 204 is cut into segments 202 and applied to the second continuous web 206.

The system 200 preferably includes a cutting apparatus 208 for cutting the first continuous web 204 into segments 202. The cutting apparatus may take any form known in the art

Accumulator 220 can take any form, such as a servo driven roller that speeds up and slows down, an alternate roller configuration, a rocking roller configuration such as shown in 15 FIG. 5, or any different means of accumulating the web, such as a miniature accumulator, or a device similar to a diaper cross-folder, or a tucker blade. A similar blade with low inertia could also be employed.

In the illustrated embodiment the cutting apparatus 208 includes an anvil 210 and a knife roll 212. The anvil 210 is preferably a vacuum anvil. As shown in FIG. 5, the first web 204 of material fed against the anvil 210 surface and is cut into segments 202 by the knife roll 212.

The system 200 preferably includes a rate adjustment 25 apparatus 214. The rate adjustment apparatus 214 is sized and configured to adjust the rate at which the first web 204 is being fed to the anvil 210 while the rate at which the first web 204 is fed to the rate adjustment apparatus 214 remains the same. In the illustrated embodiment, the rate adjustment apparatus 30 214 takes the form of an infeed conveyor 216 which controls the feed rate of the first web 204 to the anvil 210.

Preferably, after each segment 202 is cut, the infeed of first web 204 to the anvil 210 is momentarily halted. After an appropriate amount of time has passed, the infeed of the first 35 web 204 to the anvil 210 is resumed. In this manner, the segments 202 may be spaced apart when placed on the second web 206. It is contemplated that the leading edge 218 of the first web 204 will engage at least a portion of the vacuum anvil 210 after each segment 202 is cut. Preferably, the vacuum 40 anvil 210 is provided with a relatively low amount of vacuum at that point. The vacuum is preferably sufficient to retain the leading edge 218 of the first web 204 in position, with the anvil 210 slipping below the first web 204. However, the vacuum must be low enough that it does not stretch the first 45 web 204. It should be understood that this may achieved using any means known in the art including, but not limited to a vacuum manifold.

In a preferred embodiment, after the cut is performed at anvil 210, the supply of incoming web 204 to the anvil 218 is 50 momentarily stalled, which results in a gap between supply of the discrete pieces of material 202 to the web 206. Preferably next, the incoming web 204 is then accelerated to feed material to match or nearly match the velocity of roll 210 until the next cut is made. In this sense, the accumulator 220 is used to 55 create the intermittency. The purpose of the speeding and stalling is to prevent snap back of the incoming web 204.

It is further contemplated that the system 200 may include a tension control device 220. The tension control device 220 is preferably sized and configured to eliminate tension in the 60 first web 204 prior to cutting a segment 202 from the first web 204. In this manner when the cut is made the material will not snap back as it would if the first web 204 were under tension. In the illustrated embodiment the tension control device 220 takes the form of a web accumulator 222. However, it is 65 contemplated that the tension control device 220 could take any form known in the art capable of performing such a

8

function. The tension control device 220 of the illustrated embodiment includes a pair of rollers 224 coupled to a pivoting member 226. The pivoting member 226 is pivotable between a first and second position. In this manner, the first web 204 is accumulated in the tension control device 220 when the rate adjustment apparatus 214 momentarily halts the infeed of the web 204 to the anvil 210 as described above.

It is contemplated that the segments 202 may be secured to the target web 206 in any manner known in the art. For example, and not by way of limitation, an adhesive may be applied to the surface of the first web 204 prior to cutting the poly web into segments as shown in FIG. 5. In such an embodiment the system preferably includes an adhesive applicator 228 configured to apply adhesive to the outer surface of the first web 204. The adhesive applicator 228 may be of any type known in the art.

Alternatively, it is contemplated that adhesive may be applied to the surface of the second web 206 prior to placing the cut segments 202 on the second web 206 as shown in FIG. 6. In such an embodiment the system preferably includes an adhesive applicator 228 configured to apply adhesive to the outer surface of the second web 206. The adhesive applicator 228 may be of any type known in the art.

It is further contemplated that the web segments 202 may be ultrasonically bonded to the second web 206. Bonding positions could be located at positions similar to glue head 228, but also could be repositioned in the system, or could for instance employ roll 210 as an anvil, and equipped with an additional roll to react with roll 210, for instance at the 6 o'clock position of roll 210 (not shown in Figs.) Ultrasonic or heat bonding stations could also be employed.

It is contemplated that the system 200 will provide active tension control and feed approach to change the feed of the first web 204 into the slip/cut cutting apparatus 208 at the moment of cut so the first web 204 is not under tension at the cut moment. This will result in a stable cut segment 202 that can be uniformly applied to the second web 206.

Referring now to FIGS. **8-13** a representative sequence of operations showing manufacturing techniques for a chassis web portion of a product formed according the methods of the present invention is shown. This chassis web portion is intended to be combined with the simultaneously formed core (insert) assembly as described in FIG. **1**.

Beginning with FIG. **8**, indicator patch material in front portions **14***a* and rear portions **14***b* can be applied, preferably one front patch **14***a* and one rear patch **14***b* per product. The indicator patch material **14** is applied to an outer chassis nonwoven material **10**. This indicator patch material **14** can be applied (either adhesively, see, e.g., with adhesive **14**' on FIG. **19**) or printed on the insert. For instance, discrete patches **14***a* and **14***b* could be applied to the material **10**, or the indicator patches **14** could be printed onto the web **10**, or the web **10** could come pre-printed. The indicator patch material **14** is also referred to as a character strip, and this material commonly supplied as artwork and if the product is intended to be a child's disposable product, as a children's oriented art piece.

Next, as shown in FIG. 9, continuous layers of film 12 are laid down in the positions shown corresponding to the front and rear of the product when eventually formed, covering portions of the patches 14a and 14b, atop the chassis web 10. The film 12 is preferably stretched to approximately 200%-500% elongation prior to being laid down. Preferably overlying portions of the laid down stretch film 12, an inner chassis non-woven 16 is intermittently applied in the positions shown, again corresponding to the front and rear of the product when formed. Portions of the stretch film 22 com-

prising chips 22 are removed later in the process from the region generally overlying the indicator patches 14, preferably by use of the hot knife/vacuum procedure depicted in FIG. 4. The inner chassis non-woven 16, also known as the side panel non-woven 16, is preferably applied by slip/cut techniques, but can alternatively be applied intermittently using the mechanism as shown in FIGS. 5-6.

Referring now to FIG. 10, the inner chassis non-woven 16, also known as the side panel non-woven 16 is bonded to the outer chassis nonwoven web 10. The bonding can be accomplished either ultrasonically, mechanically, or adhesively. It is preferred that the bonding pattern be intermittent to coincide with the shape and size of the previously intermittently applied inner-chassis non-woven 16. It is noted that the bond between the inner-chassis non-woven 16 and the outer chassis nonwoven web 10 will also capture the elastic stretch film 12, but only in the portions of the elastic stretch film 12 overlain by the inner-chassis non-woven 16. This allows for the portions of the stretch film 12 between successive intermittently applied inner-chassis non-woven portions 16 to be removed, 20 as shown in FIG. 11, using the hot knife/vacuum procedure depicted in FIG. 4. The elastic film 22 can be cut and removed in the portions previously overlying the indicator patch portions 14, generally between successive intermittently applied inner-chassis non-woven portions 16. This can be accomplished by using a hot knife to sever the stretch film 12 (but none of the material underlying the stretch film 12), and then using a vacuum system to remove the waste chips of the stretch film 12 (not shown).

Referring now to FIG. 12, strands or bands of waist elastic 30 50 are placed towards the top and bottom of the web 10, which will ultimately become the front and rear waist band regions in the finished product. The waist elastic 50 can be coupled using adhesive 50' as shown in FIG. 19. The waist elastic 50 is placed away from the waist cap region 52 of the web 10, so 35 that the waist cap region 52 can be folded over and bonded to capture the elastics 50 with the waist cap 52 as shown in FIG. 13.

Referring now to FIG. **14**, the previously formed insert assembly **60** (see FIG. **20** for detail on the insert assembly) is 40 introduced to and laid down on the chassis assembly which has been assembled as shown in FIGS. **8-12**, in the position show so that the core **60** is generally coincident with the indicator patch portions **14**, in the center of the final product once produced.

Referring now to FIG. 15, a leg opening portion 18 of the web 10 is then die-cut and removed, preferably by vacuum. As shown in FIG. 16, the web 10 is folded over longitudinally

10

and side seam bonds **54** are formed, again preferably but not necessarily ultrasonically, in the regions shown, in order to join the front and the rear of the disposable product together to form a pant style product.

As shown in FIG. 17, discrete products are formed by severing in between successive side seam bonds 54, and these products can then be stacked and packaged as desired.

Referring to FIGS. 18 and 19, a product produced by the methods of the present invention is shown first laid open (FIG. 18) and in cross-section (FIG. 19).

The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

I claim:

1. A method of forming a disposable product comprising: forming an absorbent core;

capturing the absorbent core between a topsheet and a backsheet to form a core insert;

supplying a chassis web;

coupling a stretch material to said chassis web;

coupling an intermittent side panel material to said chassis web over said stretch material;

bonding said side panel to said chassis web;

removing a portion of said stretch film from said chassis web:

coupling said core insert with said chassis web.

- 2. A method according to claim 1, wherein said topsheet assembly is a three-ply laminate comprising an acquisition layer, a non-woven layer, and a cuff assembly.
- 3. A method according to claim 1, the method further comprising:

providing waist elastic at a waist cap portion of said chassis web:

- folding said waist cap portion of said chassis web over itself and coupling said portion with said chassis web to form a waist elastic portion of said chassis web.
- **4.** A method according to claim **1**, the method further comprising:

removing a leg portion from said chassis web;

folding said product and bonding said folded product at side seam locations.

* * * * *